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1. Introduction

In [1] H. Ooguri, A. Strominger and C. Vafa (OSV) suggested a relation between the

black hole entropy and the topological string partition function symbolically written as

ZBH = |Ztop|2. In [2] N. Nekrasov and in [3] R. Dijkgraaf et. al explained that at the

classical level the black hole entropy and the topological strings partition function are

related to a certain Hitchin functional [4] for real three-forms, which defines by critical

points a CY structure on a real six-dimensional manifold X, so Zhit = ZBH = |Ztop|2. The

important relation between Hitchin functional [4] and the quantization of the topological

B-model [5] was shown in [6] by A. Gerasimov and S. Shatashvili. Moreover, in [6] was

also suggested to use the generalized Hitchin functional [7], whose degrees of freedom are

extended by one-forms and five-forms on X. The necessity to turn on forms of all ranks

was proposed in [2] in the perspective of a certain seven-dimensional topological theory.

See [8] for topological strings in generalized complex space [7, 9].

The whole construction is about compactifications with (at least) N = 2 supersym-

metry. The usual ones are compactifications on Calabi-Yau manifolds. Then one has the

A-model and the B-model [10], parameterized by symplectic or complex structures. They

are each examples of generalized complex structures [7, 9] and each can be described by a

suitable Hitchin functional [4, 7]. The black hole entropy in the supergravity approximation

is equal to the Hitchin functional [1 – 3].

At the one-loop level, however, to reproduce the first quantum correction to the Hitchin

functional, one needs to use the generalized Hitchin functional, as was shown in [11]. In

other words, for Calabi-Yau compactification, at tree level, only the modes of the ordinary

Hitchin functional are turned on, but at one-loop level, to get the right quantum correction,

one needs to allow the extra fields of the generalized Hitchin functional to run around in

the loop.

The present paper is devoted to answering the following question: Is it possible to find

a situation in which it is necessary to use the generalized Hitchin functional at tree level
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in order to reproduce the supergravity approximation to the black hole entropy? This will

happen if the extra fields of the generalized Hitchin functional have expectation values at

tree level.

In other words, it will happen in the case of a compactification with at least N = 2

supersymmetry that cannot be described as compactification on a complex manifold (B-

model) or a symplectic manifold (A-model) – compactification that requires the language

of a generalized complex structure. Concretely, this will happen in compactifications of

N ≥ 2 supersymmetry on a manifold X with b1(X) nonzero.

There is a consistent supergravity analysis of N = 2 supersymmetric compactifications

with b1(X) nonzero and using generalized complex geometry [12 – 18]. In this paper, we will

show that in this situation, the generalized Hitchin functional reproduces the supergravity

approximation to the black hole entropy, generalizing the results of OSV for the Kahler

case.

However, actual examples of the framework of [13, 12, 14 – 18] are apparently not

yet known. To give concrete examples of our calculations, therefore, we will consider the

examples of X = T 6 and X = T 2×K3, which certainly do have b1(X) nonzero. They have

more than N = 2 supersymmetry, so it may be the case that at the loop level, they cannot

be described by the generalized Hitchin functional (but require some further extension

of it with additional fields related to the higher supersymmetry). However, at tree level

compactification on T 6 or T 2×K3 has a consistent truncation with N = 2 supersymmetry

that includes deformations best described by generalized complex geometry. In this paper,

we will show that in this subspace of the T 6 and T 2 × K3 moduli space, the black hole

entropy at tree level is described by the generalized Hitchin functional. We hope that in

the future examples will be found illustrating the ideas of the framework of [13, 12, 14 – 19]

with N = 2 supersymmetry.

For generalized complex space, the necessary formalism of topological strings – topo-

logical J -model — is presented in [8], see also [20 – 27, 17, 28 – 30]. The generalized Hitchin

functional in [7], and the compactifications of type II string theory on generalized CY mani-

folds are studied in [14, 13, 15 – 18]. For recent developments on black hole entropy see [31 –

47] and on generalized complex structures in string theory see [27, 29, 28, 48, 30, 23, 49 – 51].

In section 2 we briefly review the standard logic, in section 3 we show that it is easily

generalized. In section 4 we illustrate an emergence of the generalized Hitchin functional

for T 6 and T 2 ×K3 compactifications. The section 5 concludes the note.

2. A review

The relation between ZBH and Ztop comes from considering a compactification of the

physical type II string on a Calabi-Yau threefold X. See [52] for a comprehensive review

of the subject and the complete list of references.

The resulting low energy effective theory is N = 2 four-dimensional supergravity. It

contains the N = 2 gravitational multiplet, the universal hypermultiplet and a number

of vector and hyper multiplets depending on the geometry of X. For type IIA string

h1,1 vector multiplets correspond to the complexified Kahler moduli of X, and h2,1 hyper
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multiplets correspond to the complex moduli of X. For type IIB string the structure is

reversed. The low energy effective action for vector multiplets is fully specified by a single

holomorphic1 function, the prepotential F(X I). The XI are scalar components of the

vector multiplets, they describe moduli of the CY manifold X. The prepotential F(X)

defines a structure of the special Kahler geometry on the corresponding moduli space.

On the one hand, the physical string amplitudes on X, which compute F(X), can be

formulated in the language of topological strings [53, 5]. Namely, F(X) is just the classical

free energy of the topological string. The higher genus amplitudes give the terms

Ig =

∫
d4θW 2gFg(X

I), (2.1)

where Xk are the N = 2 chiral superfields constructed from the vector multiplets, and

W is the N = 2 chiral superfield for the Weyl multiplet W ij
µν = T ijµν − Rµνlρθiσlρθj + · · ·

(with T being the graviphoton field, so the expansion in components of (2.1) gives terms

R2T 2g−2).

On the other hand, the four-dimensional N = 2 supergravity admits BPS black hole

solutions [47, 39, 54]. These BPS black hole solutions are generalizations of the extremal

Reissner-Nordstrom black holes in Einstein-Maxwell theory with M = |Q|. The Reissner-

Nordstrom black hole has the metric

ds2 = −dt2(1− 2M/r +Q2/r2) + dr2(1− 2M/r +Q2/r2)−1 + r2dΩ2
2. (2.2)

There is a bound |Q| ≤ M . When the bound M = Q is reached, the solution becomes

BPS solution. The BPS solution preserves N = 1 supersymmetry. Moreover, the near

horizon geometry of such a solution is given by the Bertotti-Robinson metric AdS2 × S2.

In coordinates, where horizon is located at r = 0, the metric is given by

ds2 = − r
2

Q2
dt2 +

Q2

r2
(dr2 + r2dΩ2). (2.3)

The radius of this black hole is r0 = M = |Q| = |Z|, where we also introduced the

central charge of N = 2 algebra for such a BPS object. The Bekenstein-Hawking-Wald

entropy [55 – 58] is given by the familiar formula

S =
1

4
Area = πr2

0 = π|Q|2. (2.4)

In the full N = 2 supergravity we turn on the abelian vector multiplets. Each one

has a complex scalar XI and magnetic and electric fields F+
µν
I , G+

µν
I . In the language of

special Kahler geometry, it is convenient to organize the fields into pairs (X I , FI := ∂IF)

and (F+, G+) that transform linearly under Sp(2n + 2,R) duality group, actually broken

to Sp(2n+ 2,Z):

(
XI

FI

) (
F+
µν
I

G+
µνI

)
. (2.5)

1In homogeneous special coordinates, F is a homogeneous function of weight 2.
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The black hole can carry magnetic and electric charges (pI , qI), and the solution is given

by the usual 1
r2 law in the metric ds2 = −e2g(r)dt2 + e2f(r)[dr2 + r2dΩ2

2]

iF I23 = i
e−2f(r)

r2
pI , iG23I = i

e−2f(r)

r2
qI . (2.6)

It is convenient to introduce the central charge field Z = eK/2(pIFI − qIXI), where the

Kahler potential e−K = 2 Im(XI F̄I). The supersymmetry condition gives the solution for

the metric in terms of Z, so we have e2g(r) = e−2f(r) = e−K r2

|Z|2 . From the Wald formula

for the entropy one obtains again

S = π|Z|2. (2.7)

Since Z is expressed in terms of the scalars (X I , FI) and the charges (pI , qI) we still need

to find (XI , FI) in terms of (pI , qI) and then plug into (2.7). The relation is given by the

so called attractor equations2, [60, 61, 47, 39, 62, 63]

Z̄

(
XI

FI

)
− Z

(
X̄I

F̄J

)
= ie−K/2

(
pI

qJ

)
. (2.8)

So we have the formula for the entropy S(p, q)

S(pI , qI) = π
|pF − qX|2
2 Im(XF̄ )

. (2.9)

where Re(CXI) = pI , Re(CFI) = qI (we suppress index I in contractions like X I F̄I).

The formula (2.9) is invariant under a homogeneous complex dilatation, so we can put

C = 1. The attractor equations Re(CX I) = pI ,Re(CFI) = qI can be also obtained

minimizing (2.9) by XI for the fixed charges (pI , qI) with FI = ∂IF .

Let us decompose XI into the imaginary and the real part3 X ′ + iX ′′, F = F ′ + iF ′′.
Then we plug p = X ′, q = F ′ and compute S(p, q) = S(X ′, F ′)

SBH(X ′, F ′) = π
|X ′(F ′ + iF ′′)− F ′(X ′ + iX ′′)|2

2(X ′′F ′ −X ′F ′′) =
π

2
(X ′′F ′ −X ′F ′′). (2.10)

Now compare the function SHit, whose rationale will become clear in a moment,

SHit(X
′, F ′) = 1

πSBH(X ′, F ′) with the imaginary part or the prepotential F = 1
2X

IFI =

F ′ + iF ′′

SHit(X
′, F ′) =

1

2
(X ′′F ′ −X ′F ′′) (2.11)

F ′′(X ′, X ′′) =
1

2
(X ′′F ′ +X ′F ′′). (2.12)

We see that

1

π
SBH(X ′, F ′) = SHit(X

′, F ′) = X ′′F ′ −F ′′(X ′, X ′′). (2.13)

2See [59] for studies of their relation to number theory.
3In the following we often omit the index I, assuming the natural contraction in products.
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Moreover, since F = 1
2X

IFI and F is holomorphic we have the relation on the derivative

F ′I =
∂F ′′
∂XI ′′ . (2.14)

Therefore 1
πSBH(X ′, F ′) = SHit(X

′, F ′) is the Legendre transform of the imaginary part

of the topological string free energy F ′′(X ′, X ′′) in the imaginary part X ′′ ≡ ImX [1, 3, 2]

SHit(X
′, F ′) = Legendre[F ′′(X ′, X ′′), F ′ = ∂X′′F ′′] (2.15)

3. A generalization of the OSV conjecture

Before going to generalization, let us recall the meaning of the Hitchin functional SHit in

the formulas above. Let Ω be the holomorphic (3, 0) form on the CY manifold X. As usual

we have XI =
∫
AI

Ω, FI =
∫
BI Ω for some canonical basis of cycles AI , B

I . The Hitchin

functional in its critical point is the integral of the volume form defined by Ω

SHit(X
′, F ′) = − i

4

∫
Ω ∧ Ω̄ =

1

4i
(XF̄ − X̄F ) =

1

2
ImXF̄ . (3.1)

The reason why we write SHit as a function of real part of periods X ′, F ′ is that it is

actually a function of them by the construction [4]

SHit[ρ] =
1

4i

∫
(ρ+ iρ̂) ∧ (ρ− iρ̂) = −1

2

∫
(ρ ∧ ρ̂) =

∫ √
I4(ρ) =

∫
vol. (3.2)

Here ρ is a stable real three-form, and ρ̂ is a certain non-linear function of ρ, such that

ρ + iρ̂ is the decomposable almost holomorphic (3, 0) form with respect to the complex

structure also defined by ρ. The integrability of the complex structure can be cast in the

form d(ρ + iρ̂) = 0. The field theory is defined by restricting ρ to some cohomology class

in H3(X,R), so dρ = 0. In a critical point of SHit[ρ] we have dρ̂ = 0, and the complex

structure is integrable. We see that at the classical level the relation (2.15) holds: the

Hitchin functional, proportional to the black hole entropy, is the Legendre transform of the

imaginary part of the holomorphic prepotential F [1, 3, 2]. The relation between Hitchin

functional and topological string was also studied classically in [6] and at the one-loop

in [11]. For micro/macroscopical tests of the OSV conjecture see [31 – 33, 38 – 47].

In the case of generalized complex structures the whole construction works exactly

in the same way. For a generalized complex structure, an analogue of the holomorphic

(3, 0)-form will be a mixed differential form in complex H odd = H1 +H3 +H5 or Heven =

H0 +H2 +H4 +H6, which is at the same time a pure spinor Ω = ρ+ iρ̂ of SO(6, 6) [7, 9].

The off-shell generalized Hitchin functional is defined by the real part ρ of the pure spinor Ω

SGHit = −1

2

∫
(ρ, ρ̂) =

∫ √
I4(ρ), (3.3)

where ρ̂ is a certain nonlinear function of ρ, and (, ) is an appropriate bilinear form on

the space of mixed differential forms [7]. A mixed differential form ρ in Ω1 + Ω3 + Ω5 or

– 5 –
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Ω0 + Ω2 + Ω4 + Ω6, according to its chirality, transforms as a spinor of SO(6, 6), and I4(ρ)

is the singlet in the tensor product of four SO(6, 6) spinors.

The moduli space of ordinary CY structures locally is

(H3,0 ⊕H2,1)(X,C),

or H3(X,R) by Hitchin construction. The moduli space of generalized CY structures

locally near the point of an ordinary complex structure is

(H1,0 ⊕H2,1 ⊕H3,2 ⊕H3,0)(X,C),

or H1(X,R) ⊕H3(X,R)⊕H5(X,R) by Hitchin construction.

The even/odd cases of generalized complex structure in six real dimensions correspond

to the type A/B strings. They are distinguished by the chirality of the canonical pure spinor

Ω that defines the corresponding generalized complex structure. In real six dimensions a

usual complex structure is of odd type, and a usual symplectic structure is of even type.

In [7] Hitchin shows that the moduli space of generalized complex structures has a

special Kahler geometry. Since N = 2 supergravity is fully defined by an appropriate

special Kahler structure on the target manifold for the scalar fields from vector multiplets,

all N = 2 computations for the black hole entropy can be done in the generalized complex

case, as long as one includes the extra multiplets.

The outcome of N = 2 supergravity is the formula (2.15), which tells us that SBH is

the Legendre transform of ImF . Here F is the prepotential of the special geometry of the

moduli space of generalized complex structures. It can be defined in a similar way. We

pick up a basis of AI , B
I cycles in Hodd = H1⊕H3⊕H5 or in Heven = H0⊕H2⊕H4⊕H6,

which is canonical with respect to the sign twisted wedge product4 that agrees with the

bilinear form on spinors of Spin(TX, TX) [7]. Then

XI =

∫

AI

Ω, FI =

∫

BI
Ω, (3.4)

where now AI , B
I runs over all degrees in Hodd of Heven. For example, let us consider an

ordinary symplectic structure ω as a generalized complex structure. Then Ω = eiω, or

Ω = 1 + iω − 1

2
ω2 − 1

6
iω3.

We have the zero-cycle and a number of two-cycles of A type, and a number four-cycles

and the six-cycle of B type. The sign twisted wedge product is antisymmetric and defines

a symplectic structure on Heven(X). Then we recover the standard formulas

X0 = 1 F0 =

∫

X
−i1

6
ω3 (3.5)

XI =

∫

AI

iω FI =

∫

BI
−1

2
ω2 (3.6)

F =

(−i
4

+
i

12

)∫

X
ω3 = − i

6

∫

X
ω3. (3.7)

4This sign twisted wedge product for two forms α, β is defined as (α, β) = α ∧ β for deg β = 4k + 0, 1

and (α, β) = −α ∧ β for deg β = 4k + 2, 3 [7].
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The topological string in a generalized complex space — topological J -model5 — is

described in [8], see there a complete list of references on the related works. In agree-

ment with [7] it is explained in [8], that in the case dimCX = 3 the moduli space of

geometrical deformations of a generalized complex structure is a special Kahler manifold.

It is also shown that the topological string three-point function is the third derivative

CIJK = ∂I∂J∂KF of the holomorphic prepotential F of that special geometry. The man-

ifold of the geometrical deformations of a generalized complex structure is a holomorphic

Lagrangian submanifold inside the total extended moduli space of deformations of the asso-

ciated special differential BV algebra. The outcome of [8] is that the genus zero topological

string free energy without instanton corrections is given by the same formula F = 1
2X

IFI ,

where XI and F I are periods the canonical pure spinor that defines a generalized complex

structure over extended set of cycles on X. Therefore the relation

SHit(X
′, F ′) = Legendre[F ′′(X ′, X ′′), F ′ = ∂X′′F ′′] (3.8)

holds in the generalized complex case, and F ′′ is the imaginary part of the free energy of

the topological J -model [8].

What about the black hole entropy? On the one hand, given a special Kahler geometry,

we can formally write down an appropriate N = 2 four-dimensional supergravity, and then

the relation (2.15) automatically holds due to the special Kahler geometry relations. But

can it physically be related to topological strings in generalized complex space? The answer

seems to be yes, and the connection is again realized by the ten-dimensional type II string

theory compactified on the given generalized CY manifold X. Recently non Calabi-Yau

compactifications were studied in much details in [15, 13, 16, 18, 17]. We expect that

the type II ten-dimensional string theory compactified on a generalized CY manifold X is

related to the topological string on X exactly in the same fashion like in the usual case.

In [12, 14] the direct relation between Hitchin functionals for generalized complex geometry

in N = 2 supergravity and the type II string compactification was described.

4. Examples: T 6 and T 2 ×K3

Here we consider a simple example when the generalized Hitchin functional differs from

the ordinary Hitchin functional at tree level. This is possible only when X has b1(X) 6= 0,

so T 6 and T 2 × K3 are natural examples to see explicitly how the generalized Hitchin

functional works.

First of all, one shall note that the physical type II string compactified on T 6 or T 2×K3

space gives rise to N = 8 or N = 4 supergravity. Of course, the structure of these gravity

theories differs from N = 2. The usual, or generalized like in [8] topological string, as well

as attractor equations, deals only with N = 2 terms.

The additional massless vector multiplets of N = 4 or N = 8 gravities are not among

observables of the topological string, which couples to variations of (generalized) complex

5J stands for a generalized complex structure, which can in particular be an ordinary symplectic (A)

or an ordinary complex (B).
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or symplectic structure on X. We consider N = 2 truncation of the N = 4, 8 theories

and leave only those vector multiplets, whose scalars come from (generalized) complex or

symplectic moduli of X.

In T 6 case the N = 8 supergravity multiplet contains the following N = 2 multiplets.

There is 1 N = 2 gravity multiplet, 6 N = 2 gravitini multiplets, 15 N = 2 vector

multiplets and 10 N = 2 hypermultiplets. Each gravitini multiplet has two gauge fields, so

there are in total 1+12+15 = 28 gauge fields for the T 6 compactification. We throw away

the gravitini multiplets and stay with 1 + 15 = 16 gauge fields coming from the N = 2

supergravity sector.

In T 2 ×K3 case, after decomposition under N = 2, the gauge fields are counted as

follows. There is one N = 4 supergravity multiplet and 22 N = 2 vector multiplets. The

N = 4 supergravity multiplet is decomposed into 1 N = 2 gravity multiplets, 2 N = 2

gravitini multiplets and 1 N = 2 vector multiplet. It has 1+4+1 = 6 gauge fields. In total

there are 22 + 6 = 28 gauge fields with corresponding 28 magnetic and 28 electric charges.

Again we throw away the N = 2 gravitini multiplets and stay with 1 + 22 + 1 = 24 gauge

fields coming from N = 2 supergravity sector.

The corresponding black hole solution carries magnetic and electric charges only for

these N = 2 vector multiplets. The solution is 1/4 BPS for T 6 compactifications and 1/2

BPS for T 2 ×K3, so it preserves N = 1 four-dimensional supersymmetry. The truncation

is consistent classically, and we will work here only at the classical level.

Though in derivation of the Legendre transform we closely follow [64], the novelty is the

relation of the result with the generalized Hitchin functional [7] and with the generalized

topological J -model [8].

The simplest case is the 1/8 BPS black hole for the IIA on T 6 with the charges corre-

sponding to D0, D2, D4 and D6 branes [65 – 67, 64, 33, 32, 31, 34]. The IIA corresponds

to the topological A-model. The genus zero topological string free energy is given by

F = −1

6

CIJKX
IXJXA

X0
, (4.1)

where XI =
∫
AI ω are integrals of the complexified Kahler class over two cycles I = 1 . . . 15,

and CIJK is the intersection matrix for the two-cycles on T 6. We will consider AI cycles

to be the 0-cycle and all 2-cycles, the dual BI-cycles are all 4-cycles and the 6-cycle. The

2-cycles on T 6 are labelled by pairs 1 ≤ i < j ≤ 6, which we can organize into labels of

the components of 6 × 6 antisymmetric matrix. The periods X I , I = 1 . . . 15 are entries

of this matrix. The non-zero intersection of three 2-cycles correspond to the choice of

three pairs of indexes (i, j) such that all of them are different, with an appropriate sign

coming from parity of permutation (i1, i2), (i3, i4), (i5, i6) into (1, 2, 3, 4, 5, 6). Therefore the

expression (4.1) can be reorganized into the Pfaffian of the antisymmetric 6× 6 matrix X

with entries XI

F = −Pf(X)

X0
. (4.2)

Now we need to find the Legendre transform of (4.2) in imaginary part X I ′′ for

XI = XI ′ + iXI ′′, I = 0 . . . 15. In order to do that for a general cubic prepotential of

– 8 –
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n variables one has to solve a system of n quadratic equations, which generally speaking

does not have a closed algebraic solution [68]. The key property of (4.2) that allows to

explicitly find its Legendre transform in (X0 ′′, XI ′′) is its extremely simple behavior under

the full complex Legendre transform for all variables (X I , X0) at once. There exist a very

distinguished set of cubic prepotentials CIJKX
IXJXK/X0 that are invariant under the

Legendre transform in all variables. They were all algebraically classified in [69] with even

stronger condition. The exponents of these functions are invariant under the Fourier trans-

form. In the T 2×K3 case, the invariance is easy to see, and we will demonstrate it below.

As for the T 6 case, see [64, 70, 69]. (The semiclassical evaluation of the Fourier transform

reduces to the Legendre transform. In other words, integrals of exponents of such cubic

functions are exactly localized on the their critical points.6 Such nice prepotentials are

labelled by Bn, Dn, E6, E7, E8, F4, G2 algebraic types [64], and the case with Pfaffian of an

antisymmetric 6× 6 matrix is the E7 case.)

Given such an invariant function I3(XI)/X0, Pioline [64] computes its Legendre trans-

form in (X0′′, XI ′′). The idea is to shift variables xI = XI ′′− X0′′
X0′ X

I ′ in such a way to kill

the quadratic term in XI ′′ in the expansion I3(XI ′+ iXI ′′). Then the Legendre transform

is computed using the invariance of I3(XI ′′)/X0′′. In the notations p = X ′, q = F ′, φ = X ′′

the Pioline result [64] is

SHit = Legendre[− Im
I3(pI + iφI)

p0 + iφ0
, φI ] =

=
√

4p0I3(q)− 4q0I3(p) + 4∂II3(q)∂II3(p)− (p0q0 + pAqA)2 =:
√
I4(p, q). (4.3)

Specializing to the T 6 case, Pioline [64] obtains quartic SO(6, 6) invariant functional

I4(pI , qI) of 32 charges pI , qI , I = 0 . . . 16. The charge vector pI , qI of T 6 transforms as a

spinor under SO(6, 6), and I4(pI , q
I) is the singlet in the symmetric tensor product of four

SO(6, 6) spinors.

Now recall the definition (3.3) of the generalized Hitchin functional [7]. Specializing to

the case of T 6, where in the critical point Ω = ρ+iρ̂ is constant, one immediately recognizes

the agreement with the Legendre transform (4.3) of the topological string free energy (4.2).

In the framework of the generalized topological strings [8], the periods (X I , FI) are defined

by integrals of the canonical pure spinor Ω = ρ + iρ̂ of SO(TX, T ∗X), equivalently it is

a mixed differential form on X. After the Legendre transform the charges (pI , qI) are

identified with the periods of the real part ρ of Ω. In the case of A-model, Ω = eiω+b,

which gives the claimed correspondence.

What about the generalized B-model on T 6? An ordinary complex structure is defined

by a holomorphic (3, 0) form. A generalized complex structure is defined by a pure SO(6, 6)

spinor of odd chirality, which can be represented as a mixed differential form7 Ω = Ω(1) +

6The same distinguished types of cubic prepotentials were also classified much earlier in [71] studies of

N = 2 supergravity.They can appear as N = 2 four dimensional prepotentials of dimensional reduction

N = 2 five-dimensional supergravity.
7In this correspondence gamma matrices of SO(TX,T ∗X) are organized into creation and annihilation

operators ai+, aj , {ai+, aj} = δij . Then ai+ ' dxi∧ corresponds to the wedge product with dxi, and ai ' ∂i
corresponds to the contraction with the vector field ∂i.
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Ω(3) + Ω(5). The condition ‘pure’ for the SO(6, 6) spinor Ω in the generalized complex case

is an analogue of the (3, 0) type condition for the form Ω in the ordinary complex case.

Deformations of an ordinary complex structure are parameterized by Beltrami differentials

µi
j̄
, so that ∂j̄ → ∂j̄+µ

i
j̄
∂i and Ω→ e−µΩ. In the generalized complex case deformations are

given8 by µij +µi
j̄
+µīj̄, which can be viewed as a section of Λ2(TX10⊕T ∗X01) =: Λ2(L∗),

that is a subalgebra of so(6, 6,C). A deformation Ω → e−µΩ is a rotation of a spinor by

an element µ of Λ2(L∗) ⊂ so(6, 6,C). We restrict so(6, 6,C) to Λ2(L∗) to keep the spinor

pure. Let us introduce indexes (a, b) which run over upper holomorphic 123 indexes and

lower antiholomorphic 1̄2̄3̄ indexes. Then an element µab of Λ2(L∗) ⊂ so(6, 6,C) defines a

rotation of the spinor Ω by the formula

Ω = e−µΩ0 = e−
1
2
µabΓ

aΓbΩ0. (4.4)

The entries µab = (µij, µi
j̄
, µīj̄) are organized into an antisymmetric 6× 6 matrix

µab =

(
µij µi

j̄

−(µi
j̄
)T µīj̄

)
. (4.5)

In the case of T 6 deformations, µ is a constant matrix, and the general Chern-Simons

like cubic formula [8] for the tree level free energy of J -model is reduced to

F(µ|Ω0) = −1

6
((µabΓ

aΓb)3Ω0,Ω0), (4.6)

which in turn gives

F(µ|Ω0) = −Pf(µ). (4.7)

We see that in the canonical coordinates, the free energy of the B-model on T 6 is also

given by the cubic polynomial, namely Pfaffian of an antisymmetric 6 × 6 matrix. We

can also write the formula in terms of periods X I =
∫
AI

(µ · Ω), where 15 AI cycles in

(H1⊕H3⊕H5)(X,C) are dual to the forms µ ·Ω as follows. There are 3 one-cycles for dz i,

9 three-cycles dz ī∧dzj ∧dzk, and 3 five-cycles dz1∧dz2∧dz3∧dz ī∧dzj̄ . In addition there

is one distinguished cycle A0, which is dual to dz1 ∧ dz2 ∧ dz3. In terms of these periods

XI =
∫
AI (µ · Ω) we obtain

F = −Pf(X)

X0
. (4.8)

Then one proceeds in a similar way to the A-model considered above. For an illustration

let us look at the Hodge diamond of T 6. The spaces of Ω and (µ · Ω), which describe

deformations of generalized complex structure with a reference point being an ordinary

8At an arbitrary reference point the geometrical deformations in the topological J -model are given by

Λ2(L∗), and all extended deformations are given by Λ•(L∗), where L is the +i-eigenbundle of the generalized

complex structure J ∈ End(TX ⊕ T ∗X).

– 10 –



J
H
E
P
0
9
(
2
0
0
6
)
0
3
4

complex structure, are underlined. They are mirror to H 0 ⊕ H2 in the A-model by 90

degree rotation of the Hodge diamond

h00

h10 h01

h20 h11 h02

h30 h21 h12 h03

h31 h22 h13

h32 h23

h33

=

1

3 3

3 9 3

1 9 9 1

3 9 3

3 3

1

. (4.9)

Let us remark however, that such a simple cubic formula for F of the generalized

B-model is obtained only in the so called canonical coordinates µ, in terms of periods X I

over carefully chosen set of cycles by the condition that X I are linear functions of µ. And

the fact that F of the B-model on T 6 does not have corrections to the cubic term by

mirror symmetry means the well-known fact that the topological A-model on T 6 does not

have instanton contributions, so the formula (4.2) is exact in genus zero9. The function

F = 1
2X

IFI is not Sp(2N) invariant under a change of basis of cycles, but (X I , FI ≡ ∂IF)

transforms as a fundamental of Sp(2N). One can also compare the present computation

with computation of ordinary deformations of complex structure parameterized byH 2,1(T 6)

in [59].

Let us turn to the type II string on K3 × T 2 [72, 73, 65, 67, 66, 33, 31, 32, 34, 64].

As we explained above, we consider the truncation of the spectrum to 1 + 23 = 24 gauge

fields with 24 electric and 24 magnetic charges. The gauge fields come from reduction of

RR (p + 1)-forms on p-cycles on X. In type IIA p is even, and in type IIB p is odd. The

Hodge diamond for dimHp,q of T 2 ×K3 has the following form

h00

h10 h01

h20 h11 h02

h30 h21 h12 h03

h31 h22 h13

h32 h23

h33

=

1

1 1

1 21 1

1 21 21 1

1 21 1

1 1

1

. (4.10)

Again we underlined spaces of generalized deformations with a reference point being

an ordinary complex structure (the B-model). There are 22 ordinary CY moduli (20+1

for complex structures on K3 and T 2, and 1 for an overall dilatation of the holomorphic

(3, 0)-form) and 2 generalized extra moduli coming from deformations by a holomorphic

bivector βij and B-field Bīj̄ . After contraction with the holomorphic (3, 0) form, the β ij

and Bīj̄ generalized deformations sit in Ω10 and Ω32 entries of the Hodge diamond. We

can decompose this deformation over the following basis in H odd = H1 +H3 +H5.

9Actually, the higher genus contributions also vanish.
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There is 1 deformation of complex structure on T 2, which after contraction with the

holomorphic (1, 0) form on T 2 is mapped to the (0, 1) form on T 2 times the holomorphic

(2, 0) form on K3. The coefficient at the form (dz)T 2 ∧ΩK3 is called X1.

There are 20 deformations of complex structure on K3 µi
j̄
, which after contraction

with the holomorphic (2, 0) form are mapped into (1, 1) forms (µ ·ΩK3)ij̄ on K3 times the

holomorphic (1, 0) form on T 2. The corresponding coefficients are called X I , I = 2 . . . 21.

There is 1 generalized deformation by holomorphic bivector on K3, which after con-

traction with the (3, 0) holomorphic form Ω is mapped to the (1, 0) holomorphic form on

T 2. The corresponding coefficient is X22.

There is 1 generalized deformation by Bīj̄ field, which is mapped to the space spanned

by (dz)T 2 ∧ ΩK3 ∧ Ω̄K3. The corresponding coefficient is X23.

There is 1 dilatation of Ω, which is mapped to the same space of (3, 0) forms Ω. The

corresponding coefficient is X0.

In total we have 24 periods XI , I = 0, . . . 23 corresponding to the 24 gauge fields in

N = 2 vector multiplets.

Using formalism of [8] it is not difficult to see the topological string free energy is given

by

F =
1

2

X1CabX
aXb

X0
(4.11)

where Cab is the intersection matrix in H2(K3), a = 2 . . . 23. Again the B-model answer

is a simple cubic expression10, exactly in agreement with the mirror symmetry (T 2 ×K3

is mirror symmetric to itself) and the fact that A-model does not have any worldsheet

instanton corrections in genus zero.

The full Legendre transform of the function F = 1
2X

1CabX
aXb/X0 in all complex

variables XI is given simply by − 1
2F1C

abFaFb/F0. (In other words, for the bilinear form

that satisfies C = C−1, the function (4.11) is invariant under the full Legendre transform

and fall into the classification of [69]). Explicitly, we need to solve ∂0F = F0, ∂1F = F1

and ∂aF = Fa, so we have

−1

2

X1

(X0)2
CabX

aXb = F0 (4.12)

1

2

1

X0
CabX

aXb = F1 (4.13)

X1

X0
CabX

b = Fa. (4.14)

Dividing the first line over the second, we have X0

X1 = −F1
F0

. From the third line we have

Xb = X0

X1C
baFa = −F1

F0
CbaFa. Then CabX

aXb = (F1
F0

)2CbaFaFb. Then from the second line

we have X0 = 1
2

F1
(F0)2C

baFaFb, and, using F0/F1 = −X0/X1 we get X1 = −1
2

1
F 0C

baFaFb.

10The solution of the Kodaira-Spencer equation for ∂̄(a+ x) + 1
2
{(a+ x), (a+ x)} for µ = x+ a, gives a

nonzero correction a to the harmonic representative x of cohomology class H1(TX). However the correlationR
T2×K3

((µ·)3Ω,Ω) decouples into
R
T2 and

R
K3

((µ·)2ΩK3,ΩK3) =
R
K3

(µ · Ω) ∧ (µ · Ω). That differs from

(x · Ω) ∧ (x · Ω) by an integral of ∂-exact times ∂-closed term, which vanishes.
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We see that XI are expressed in terms of FI in the same way as FI in terms of XI (up to

the minus sign).

For any homogeneous function of weight two F = 1
2FIX

I , the Legendre transform is

given by F̃ = FIX
I −F = 1

2FIX
I(FJ ). We plug the expressions for X I and obtain

F̃ = −1

2

F1C
abFaFb
F0

. (4.15)

Then we can use Pioline [64] formula (4.3) for the Legendre transform in imaginary

part of X to find

SBH = πSHit = π
√
p2q2 − (p · q)2, (4.16)

where the charge vectors (pI , qI) are identified with real part of (X I , FI), and the scalar

product is taken in the (20, 4) signature lattice. This is the truncation of the full (22, 6)

lattice for type II on T 2 × K3 to the charges of N = 2 vector multiplets in agreement

with [72, 73, 65, 67, 33, 31, 32, 34, 64].

5. Conclusion

In this note it was argued that the OSV conjecture [1] is applicable to the case of generalized

complex structures [7, 9]. If b1(X) = 0 one has to use generalized Hitchin functional at

quantum level [11]; classically the generalized and the ordinary geometry does not differ.

However, if b1(X) 6= 0, like in the case of T 6 or T 2×K3, the emergence of the generalized

Hitchin functional is inevitable at tree level.

Deformations of a generalized complex structure on a three-fold X are parameterized

by the half of all even/odd cycles in type A/B. The extra moduli exist at the classical

level if H1(X) is not trivial. For example, the extra deformations of complex structure

include H1,0 and H3,2 in addition to the standard H2,1. The classical black hole entropy

in this case is given by the generalized Hitchin functional of the form
∫ √

I4(ρ), where ρ

is the real part of the canonical pure SO(6, 6) spinor (mixed differential form) on X. The

scalar fields in N = 2 multiplets come from all such generalized deformations, and the

corresponding gauge fields come from reduction of all odd/even RR forms Cp in type II

A/B on all even/odd cycles in X.

We did not touch extremely interesting subjects of higher genus and nonperturbative

corrections to the relation, but suggest that the generalized geometry must be an appropri-

ate framework for study of the subject. Especially this is interesting in the context of non

CY background compactifications [14, 13, 15 – 18]. The microscopical counting of black

hole entropy could illuminate non-perturbative structure of the topological J -model [8].
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